Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis.

نویسندگان

  • Pankaj Dhonukshe
  • Frantisek Baluska
  • Markus Schlicht
  • Andrej Hlavacka
  • Jozef Samaj
  • Jirí Friml
  • Theodorus W J Gadella
چکیده

Dividing plant cells perform a remarkable task of building a new cell wall within the cytoplasm in a few minutes. A long-standing paradigm claims that this primordial cell wall, known as the cell plate, is generated by delivery of newly synthesized material from Golgi apparatus-originated secretory vesicles. Here, we show that, in diverse plant species, cell surface material, including plasma membrane proteins, cell wall components, and exogenously applied endocytic tracers, is rapidly delivered to the forming cell plate. Importantly, this occurs even when de novo protein synthesis is blocked. In addition, cytokinesis-specific syntaxin KNOLLE as well as plasma membrane (PM) resident proteins localize to endosomes that fuse to initiate the cell plate. The rate of endocytosis is strongly enhanced during cell plate formation, and its genetic or pharmacological inhibition leads to cytokinesis defects. Our results reveal that endocytic delivery of cell surface material significantly contributes to cell plate formation during plant cytokinesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plant Cytokinesis Requires De Novo Secretory Trafficking but Not Endocytosis

During plant cytokinesis membrane vesicles are efficiently delivered to the cell-division plane, where they fuse with one another to form a laterally expanding cell plate. These membrane vesicles were generally believed to originate from Golgi stacks. Recently, however, it was proposed that endocytosis contributes substantially to cell-plate formation. To determine the relative contributions of...

متن کامل

High lipid order of Arabidopsis cell-plate membranes mediated by sterol and DYNAMIN-RELATED PROTEIN1A function

Membranes of eukaryotic cells contain high lipid-order sterol-rich domains that are thought to mediate temporal and spatial organization of cellular processes. Sterols are crucial for execution of cytokinesis, the last stage of cell division, in diverse eukaryotes. The cell plate of higher-plant cells is the membrane structure that separates daughter cells during somatic cytokinesis. Cell-plate...

متن کامل

Very-long-chain fatty acids are required for cell plate formation during cytokinesis in Arabidopsis thaliana.

Acyl chain length is thought to be crucial for biophysical properties of the membrane, in particular during cell division, when active vesicular fusion is necessary. In higher plants, the process of cytokinesis is unique, because the separation of the two daughter cells is carried out by de novo vesicular fusion to generate a laterally expanding cell plate. In Arabidopsis thaliana, very-long-ch...

متن کامل

An A/ENTH Domain-Containing Protein Functions as an Adaptor for Clathrin-Coated Vesicles on the Growing Cell Plate in Arabidopsis Root Cells1[W][OA]

Cytokinesis is the process of partitioning the cytoplasm of a dividing cell, thereby completing mitosis. Cytokinesis in the plant cell is achieved by the formation of a new cell wall between daughter nuclei using components carried in Golgi-derived vesicles that accumulate at the midplane of the phragmoplast and fuse to form the cell plate. Proteins that play major roles in the development of t...

متن کامل

The Role of Endocytosis in the Creation of the Cortical Division Zone in Plants

Control of the pattern of cell division is essential for the proper development of multicellular organisms. In animal cells, cytokinesis is mediated by a contractile ring in which the cleavage force is produced by an acto-myosin system. Furthermore, the future site of cell division in animal cells (the site where contraction starts in the cell cortex) is determined by the position of the aster ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental cell

دوره 10 1  شماره 

صفحات  -

تاریخ انتشار 2006